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Consider a simple random walk on //a whose sites are colored black or white 
independently with probability q, resp. 1 -  q= Walk and coloring are inde- 
pendent. Let n k be the number of steps by the walk between its kth and (k + 1) 
th visits to a black site (i.e., the length of its kth white run), and let 
Ak=E(nk)--q -1. Our main result is a proof that (,) limk~ka/2Ak= 
(1--q)qd/2-2(d/2~) a/2. Since it is known that q-lA~=E(nlnk+llB)-- 
E(nj IB)E(nk+llB), with B the event that the origin is black, (*) exhibits a 
long-time tail in the run length autocorrelation function. Numerical calculations 
of A~ (1 ~<k~< 100) in d=  1, 2, and 3 show that there is an oscillatory behavior 
of 3k for small k. This damps exponentially fast, following which the power law 
sets in fairly rapidly. We prove that if the coloring is not independent, but is 
convex in the sense of FKG, then the decay of A~ cannot be faster than (,). 

KEY WORDS: Random walk in random scenery; interarrival times; run 
length autocorrelation function; long-time tail; FKG inequality; local times. 

1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF R E S U L T S  

This  pape r  t reats  a m o d e l  of  a r a n d o m  walk  o n  a lat t ice wi th  a r a n d o m  

b l a c k - w h i t e  co lo r ing  ass igned  to its sites. W a l k  a n d  co lo r ing  are inde-  
penden t .  W e  are  in te res ted  in  the  a s y m p t o t i c  b e h a v i o r  of the in t e ra r r iva l  
t imes be tween  successive visits of  the  walk  to the b lack  sites, in  par t icu la r ,  

in the occur rence  of a long-time tail in  the averages  a n d  a u t o c o r r e l a t i o n s  of 
the in t e ra r r iva l  t imes. 

L o n g - t i m e  tails have  been  f o u n d  in  m a n y  re la ted mode l s  desc r ib ing  

di f fus ion in  d i so rde red  media ,  e.g., L o r e n t z  models ,  t r a p p i n g  models ,  a n d  
h y d r o d y n a m i c  fluid mode l s  (see ref. 1 for a review; also see refs. 2). W i t h  
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few exceptions, the theoretical analysis of such models is hard. Not  only are 
most of the arguments appearing in the literature heuristic, they often fail 
to give an explicit evaluation of the tail amplitude, especially in higher 
dimensions. Numerical simulations of long-time tails are generally difficult 
to perform accurately and often agree only qualitatively with the theoreti- 
cal predictions. The model in the present paper is relatively simple because 
walk and coloring are assumed to be independent. This will allow us to 
prove a rigorous and explicit long-time tail result, and to develop an 
accurate numerical analysis as well. 

Most of what we shall have to say will refer to a Bernoulli coloring 
and a simple random walk, but it will pay to start off in a more general 
setting. Throughout  the paper we shall use the symbols P and E to denote 
probability and expectation with respect to either coloring or walk or both. 

Consider the lattice Z d and associate with it: 

(i) A random coloring (C(z))z~zu with C ( z ) ~  {B, W}  for each z. 

(ii) A random walk (Xn)n>~O with X,~Y_  d for each n and X0=0.  

Assume that the coloring is stationary and ergodic with 

0 < q = P(C(O) = B) < 1 

and that the increments Xn+~--Xn, n>~0, of the walk are i.i.d, and 
aperiodic. The sequence (C(Xn))n >1 o of colors hit by the walk is stationary 
and ergodic, (3) and determines the sequence (Tk)k~> ~ of black hitting times, 

C ( X n ) = B  for n = T 1 ,  T2 .... 

C(Xn) = W otherwise 

Our main object of study is the sequence (nk)k~o of interarrival times 
between black hits 

n o = T 1 

n k =  Tk + l -- Tk (k~>l) 

to which we shall refer as run lengths. 
There is an anomalous effect (well known in renewal theory) which 

causes the nk for different k to have different distributions. This is seen 
most easily by considering a Bernoulli coloring and a simple random walk 
on Z. The white interval containing 0 is stochastically larger than the other 
white intervals. Because the walk may return to the origin many times, it 
tends to spend an anomalously long time in this interval, causing the n k to 
be stochastically larger than expected. As k ~ ~ ,  the walk diffuses away 
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and  the nk decrease to a l imit ing d is t r ibut ion .  The la t te r  co r responds  to the 

walk seeing a s t a t ionary  color  scenery at  the beginning  of its white runs. I t  
is precisely this decay  tha t  we want  to capture .  

I t  has  been shown (4) tha t  if the color  d i s t r ibu t ion  is tail tr ivial  (which 
includes,  e.g., all ex t remal  G ibbs  states for a given in terac t ion) ,  then for 
each integer m/> 0 

lira P(nk>m)=q-lP(no=m) (1) 
k ~ o o  

This expresses the l imit ing run length d i s t r ibu t ion  in terms of the d is t r ibu-  
t ion of  no, the length of the init ial  run to a b lack  site. A l though  very little 
is k n o w n  abou t  no in general ,  3 we can at  least  infer from (1) that  

lira E(ng) = q -~  (2) 
k ~ o o  

prov ided  we can come ap with a sui table  d o m i n a t e d  convergence 
argument .  4 So it is na tu ra l  to consider  the quant i t ies  

J/~ = E(n~) - q -  J (k >>, 1 ) 

which are  the average "excess" run lengths. The  fol lowing identi t ies I6) will 
be needed la ter  on 

q - l = E ( n k l B )  ( k > ~ l )  (3) 

q - l E ( n k ) = E ( n , n ~ + l l B )  ( k ~ > l )  (4) 

Here  B is a sho r t -hand  no ta t ion  for the event  { C ( 0 ) =  B}. C o m b i n i n g  (3) 
and  (4), we have 

Ak = E(nk)  -- E(nk  I B) 

= q [ E ( n l n ~ + ~ [ B ) - E ( n l I B ) E ( n k + l I B ) ]  ( k ~ > l )  (5) 

3 For Bernoulli coloring there are several asymptotic results known for no, e.g., P(n o = m) for 
large m and E(no) for small q. See, e.g., refs. 5. 

4 By Cauchy-Sehwarz, 

q-iP(ng > m) : E ( n  I 1 { . . . . . .  }l B) 

<~ [E(n2IB) P(nk +1 > m I B)] 1/2 

=q l[(l+2E(n0))P(n0=m)] 1/2 

for all k~> 1 and m>~0. The two equalities follow from refs. 6 and 7. Hence (1) implies (2) 
when Z,,/>0 [P(n0 = m)] 1/2< ~ ,  which can be shown to hold under a weak mixing condi- 
tion for the color distribution. Then also E(no)< ~ because P(n o = m) is monotone in m. (6) 
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Thus we see that A k also manifests itself as a run length autocorrelation 
function. It is known that the sequence (nk)k>~l given B is stationary. ~6'7) 

In Sections 2 and 3 we prove the following three theorems. The first 
gives an inequality valid for all color distributions which are convex in the 
sense of FKG. ~8) The second gives an identity valid for Bernoulli coloring. 
The third is our long-time tail result. 

Theorem 1. Suppose that the color distribution is convex. Then for 
arbitrary random walk, any 0 < q < 1, and any 0 ~< r/< 1, 

E(no)+ ~ ~I~A~>~ 1 - q  G(l_q+q~l)  (6) 
k>~l q 

Here G(z)=Zn>~o z 'P(X,=O) is the generating function for return to the 
origin by the random walk. 

Theorem 2. Suppose that the color distribution is Bernoulli. Then 
for arbitrary random walk and any 0 < q < 1, 

1 - q  
E(no)+l im ~ r/~Ak= G(1) (7) 

q'[l k>~l q 

This is finite if and only if the random walk is transient. 

Theorem 3. Suppose that the color distribution is Bernoulli. Then 
for simple random walk and any 0 < q < 1, 

lim kd/ZAk = (1 -- q)qa/2-Z(d/27r)a/2 (8) 
k --* oo 

Theorem 1 can be interpreted as an inequality for the mean trapping 
time Zk>~oqkE(nk) when the black sites act as traps with survival 
probability ~/. Its generality is interesting because most results in the 
trapping literature are restricted to Bernoulli distribution. Theorem 2 says 
that, for Bernoulli coloring, (6) reduces to an equality as ~/T 1. As to 
Theorem3,  for simple random walk G(1--q+qq)=Zk>~O~lkgk with 
ka/Zgk--*qa/Z-l(d/2rQa/2 as k-- .oo (see Section3). So (8) says that, for 
Bernoulli coloring and simple random walk, both sides of (6) have the 
same asymptotic coefficients and hence the same asymptotic behavior as 
q i" 1. From (8) it follows that the 3 k are asymptotically positive, in which 
case the limit and the sum in (7) may be interchanged. Incidentally, note 
that (7) is a rather remarkable identity because there are no exact expres- 
sions known for any of the expectations appearing under the sum. 5 

5 For simple random walk in d =  1 one can calculate E(no) and the first few z] k by hand, but 
there is no exact expression known for general k even for this simple case. The first few zlk 
turn out to be monotone decreasing in k, suggesting that possibly z~ k is monotone for all k. 
The simulations in. Section 4 seem to support this. The A~ are not monotone in d>~ 2. 
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To explain heuristically where the right-hand side of (8) comes from, 
let us note that, by (3), Ak=(1--q)[E(nkIW)--E(nklB)] with W t h e  
event {C(0)= W}. First, the idea is that the following should be true as 
k---~ oo: 

E(nklW)--E(nklB)~q IE(f{Tk<n<~TK+L:X,=O}I) (9) 

Indeed, if the origin is white, then each time the walk visits the origin 
during its kth run the expected time to complete this run will be prolonged 
by an amount q-1 compared to when the origin is black. This is precisely 
what is expressed by (3), q 1 being equal to the expected time needed to 
either return to the origin or hit a black site outside the origin. Next, since 
by (2) the expected length of the kth run converges to q- l ,  it should also 
be true that as k--* 0% 

E(l{Tk < n ~  Tk+1: Xn=O}I)~q-Ip(XTk ~O) (lo) 

Finally, if T~..~kq -1 with probability tending to 1 sufficiently fast as 
k --* 0% then (9) and (10) together imply (8), because P(X, ~ O) ..~ (d/2nn) d/2 
as n ~ oe (ref. 9, Section 7). 

Of course, the above is only a heuristic explanation. The main 
difficulty is that a change of the color at the origin mixes up the sequence 
(Tk)k~> 1, hence changes the position occupied by the walk at time Tk, and 
therefore also affects the local color scenery that is seen by the walk at the 
start of its kth run, which in turn determines nk. This means that E(nk] W) 
and E(nkJB) are not so easy to compare. 

In Section 4 we describe numerical calculations of Ak, 1 ~< k ~< 100, for 
a range of q values in d = 1, 2, and 3 (for Bernoulli coloring and simple 
random walk). These were performed on finite lattices of up to 105 sites 
with periodic boundary conditions. A color configuration was generated 
by a random number generator. Then the random walk problem was 
solved by numerical solution of difference equations (this technique avoids 
simulation of the walk). The results are plotted in Figs. 1-3, which indeed 
are seen to confirm (8). The A~ for small k exhibit an oscillatory effect: the 
even Ak are smaller than the extrapolation of the odd Ak (see Fig. 4). This 
oscillatory effect damps exponentially fast, after which the power law 
behavior is found to appear fairly rapidly. For large q the oscillations are 
strong. It may even happen that Z~2k<A2k+l for small k when d~>2 
(see Fig. 4). For small q, on the other hand, the oscillations are weak, but 
persist for long times. 

Remark that the right-hand side of (5) is an autocorrelation function 
of a stationary process. To make the link with Lorentz models, note that 



1532 den Hollander e t  al.  

because Tk is a stopping time and because each step of the walk on the 
average increases the square of its displacement by 1, we have 

E(X~k ) = E(Tk) 
and hence 

2 2 6kE(Xr k) = 6k 3 k 

with ~k the forward difference operator. In view of (5), this identity in a 
sense is the analogue of the well-known identity �89 
E(v(O) v(t)) in Lorentz models, (1) valid for a mechanical particle in equi- 
librium with its environment, with X(t) and v(t) its position and velocity at 
time t. It is believed that E(v(O)v(t))~,,At -d/2 ~ as t--. o e, with A some 
model-dependent (negative) amplitude (unknown). Our main result (8) 
shows that 6~Ak has just that behavior. 

In a forthcoming publication we prove a rigorous long-time-tail result 
for a random waiting time model. 

2. PROOFS OF T H E O R E M S  1 A N D  2 

We shall identify a coloring (C(z))z~d with the set C =  { z ~ d :  
C(z) = B} containing all its black points. For given C, let 

nk( C ) = E(nk [ C) 

rk(C)=P(Xnr Tk, Xn = 0 for some T~<n<~ Tk+ll C) 

i.e., the expected length of the kth run and the probability of first return 
to the origin during the kth run, both for given C and averaged over the 
walk (To=0).  For 0~<q< 1 let 

n (C)=  }-" tffnk(C) 
k~>O 

r (C)=  ~ tffr~(C) 
k>~O 

In what follows it is easiest to think of q as a survival probability. If at each 
visit to a black site the walk has probability 1 - q  of being killed and 
probability q of  surviving, then n(C) and r(C) can be interpreted as the 
expected walk length, resp. the return probability before killing. 

To prove Theorem 1, let 0 ~ C and observe that the following relation 
holds: 

~ce( C) 
n (C)=n(Cw {0}) (11) 

1 + ~e(C) 
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with ~c= r / / (1- t / )  and e ( C ) =  1 - r ( C ) .  This is explained as follows. If we 
change the color of the origin from white to black, then the expected walk 
length before killing decreases from n(C) to n(Cw {0}) because we are 
introducing an extra killing probability for each time that the walk visits 
the origin. The expected number of visits to the origin in C u  {0} equals 
1 + tlr(C ) + [qr(C)] 2 + ..., and so 1 - q times this sum is the probability 
that the walk is killed at the origin in C u  {0}. Such killing reduces the 
expected walk length by n(C) and hence we have 

n(C)=n(CtJ {0})+  ( l - t / ) { 1  +fir(C)+ [qr(C)-[2+ ..-} n(C) 

which is ( 11 ). 
If we write Pw(C)= P(CI 0 r C) and Ps(C)= P(CI 0 e C), and average 

over C, then the right-hand side of (11) gives 

fc~o 
{o}) dP (C)1> n(c  {0})dPB(C {0}) 

= fc~o n(C) dPB(C) 

= n k ( O  de,,(c) 
k~>O ~0 

= Y   E(nkIB) 
k~>O 

= ~q- l  (12) 

where (3) is used in the last equality. The inequality in (12) holds because 
n(C) is decreasing in C and because Ps(Cw {0}) dominates Pw(C) in the 
sense of Holley. (1~ The latter is a consequence of the convexity property of 
P(C). Thus we get from (11) and (12) 

fc e(C) n(C) 1 
~o 1 + tee(C) dPw(C) >~ q- (13) 

Note that both (12) and (13) reduce to equalities when the coloring is 
Bernoulli. We shall need this later to prove (7). 

Our next step is to apply the F K G  inequality to the left-hand side of 
(13). Since e(C) is increasing in C, the ratio e(C)/[1 + Ke(C)] is increasing 
in C, and hence the left-hand side is bounded above by the product of 

fc~o {1 e(C) ~ dPw(C) + tce(C)J 
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and 

fc~o n(C) dPw(C) 

Note here that Pw(C) inherits the convexity property from P(C). The 
integrand of the first integral is a concave function of e(C) and hence, by 
Jensen's inequality, 

E(e] W) E(n[ W) >~ q-1 (14) 
1 + KE(et W) 

where 
( ,  

E(nl W) = Jc~0 n(C) dPw(C ) 

F4rL W) = fc~o r(C) dP~(C) (15) 

E(e[ W) = 1 - E(r [ W) 

Next we derive a lower bound for E(rlW). Fix a walk of n steps and 
let l(z, n) be its local time at site z, i.e., 

l(z, n ) =  [{0~<i<~n: Xi= z}[ 

The probability that the given walk survives its n steps (i.e., is not killed by 
the black sites it encounters outside the origin) equals 

f dPw(C) I~ (l{~r 
C~O z ~ O  

The integrand is a product of decreasing functions in C, and so by F K G  
this is bounded below by 

1-[ _ ~c,o dP w( C )(1 (z~c} + qt(z'")l (~, c}) 
z ~ 0  

Another application of F K G  shows that this further decreases if Pw(C) is 
replaced by P(C), and hence the survival probability is bounded below by 

which in turn exceeds 

I-I (1-q+qr/~(~'~) 
z ~ O  

(1 -- q + qq)y.~0t(z,,) 
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Now use the identity 

It foUows that 

Y" l(z, n) = n + 1 (16) 
z 

E(rl W)~  ~, ( 1 - q + q ~ l ) n - ~ P ( X , n r  
n>~l 

because l(0, n) = 2 if first return to the origin occurs at time n. Hence 

E(r I W) ~ ! F(z) ~=1--q+q~l 

with F(z) the generating function for first return to the origin by the 
random walk. Next use the identity G ( z ) = l / [ 1 - F ( z ) ]  (see ref. 9, 
Section 1). Then (14) yields 

E(nl  W)  - ~cq- 1 >>. q 1 z G ( z )  z 
1 - ( 1 - z )  G(z) = 1  q+qrl 

Finally, use the identities 

E(n) = qE(nlB) + (1 - q) E(n[ W) 

E(nlB)=tcq 1 

with E(nIB) and E(n) defined in analogy with (15) to obtain 

(17) 

E(no) + ~ tlkAk = E(n) -- E(n [B) 
k>~l 

= ( 1 - q ) [ E ( n ]  W ) - E ( n ] B ) ]  

>>- 1 - q zG(z) 
q 1 - ( 1 - z ) C ( z ) z = ,  q+q~ 

This is slightly stronger than Theorem 1, because G(z) >/1 for all z/> 0. | 

To prove Theorem 2, first note that the right-hand side of (7) becomes 
a lower bound after we take the limit r/]" 1 in (6). This lower bound is 
infinite when the random walk is recurrent, so we need only worry about 
the transient case. Now let us return to (13), which we know reduces to an 
equality when the coloring is Bernoulli. Since for every C ~ 0 and 0 ~< q < 1 
we have r(C)<~F(1)=P(X,=O for some n > 0 ) <  1, it follows that 

1 
E(n I W) ~ + ~q- 1 

q[1 - F(1)]  

822/66,'5-6-23 
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With (17) this extends to 

1 - q  1 E(n) ~ + tcq 
q[1 -- F(1)] 

which provides the upper bound because G(1)=  1 / [ 1 -  F(1)]. | 

3. PROOF OF T H E O R E M  3 

This section has two parts. In Section3.1 we outline the main 
arguments, which are based on Lemmas 1-7 below. The proof of Lemmas 
1 and 4-6 is given right away. In Section 3.2 we prove Lemmas 2, 3, and 
7, which are more technical. 

3.1. Ma in  Arguments  

Let H(r/) denote E(nIW)--E(nlB). Then, as below (17), 

( l - - q )  H(rl)=E(no)+ ~ tlXAk (18) 
k~>l 

It is known that, for Bernoulli coloring and simple random walk, 
E(no) < ~ and IAkl ~<A1 < ~ for all k>~ 1 (see footnote 4 and refs. 6 and 
7), hence H(r/) is analytic on {r/~ C: I~1 < 1 }. We start from the following 
formal expression, where the expectation is over the walk only: 

L e m m a  1. For r/~ C with [~l < 1 

H( t / )=  ~ E((1--t/ ' (~ FI (1--q+qr/ ' (z 'n '))  (19) 
n>~O z:~O 

The sum is uniformly convergent on compact subsets. 

Proof of Lemma 1. For 0~<r /<l ,  Eq.(19) can be understood as 
follows. If we condition on the origin to be white, then the probability that 
the walk survives all its black visits during n steps equals [see below (15)] 

1-I (1-q+qr/t(z'")) 
z:r 

Here we use the Bernoulli property of the coloring. On the other hand, if 
we condition on the origin to be black, then its survival probability equals 

r/t(~ [ I  (1-q+qr / t~ '~) )  
z ~ O  
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because now 0 contributes an extra factor @o,,). Subtracting these 
two products, averaging over the walk, and summing on n to get 
E(nl W ) -  E(nIB), we have (19). 

Alternatively, for t /e C with It/4 < 1, one can write 

qgnk = ~ qg ~ l(rk~n<r~+,~ 
k > ~ O  k ~ > O  n > ~ 0  

= y" rlE~-ol~clx,,I-B} 
n>~O 

= 2 t]Ezl(z'n)l{clz~-B} 

n>~O 

and average the summand over the coloring conditioned on a white or a 
black origin, respectively, thereby obtaining the same two products. Take 
the average over the walk and pull the sums over k and n, respectively, in 
front (see below). 

To see why the second claim of the lemma is true, argue as follows. 
For  all integers 1 ~> 0 

11 -q+q~'[  <~1 - q + q  InlZ~< (1 - q + q  i~l)'~ ,>0} 

Let Hn denote the nth term in the right-hand side of (19). Then we have 

Ig.0/)l  ~ 2E((1 - q + q  ]r/l) R" 1) 

with 

R n = ~  1 {t(~,n)> o} 
2 

From the identity (16) it follows that 

Rn 7> (n + 1)/sup l(z, n) 
z 

Hence 

E ( ( 1 - q + q  I~/I) R~-l) 

~< P(sup l(z, n) >~ n 2/3 -'}- 1) q- exp[- - q ( 1  - I~1 )/71/3 ] 
z 

for all n 

In Lemma 7 below we shall see that 

P(sup l(z, n) >1/./2/3 .q._ 1 ) ~ (//-t- 1 ) exp( - C 1 n 1/3) 
z 

for all n 
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for s o m e  C 1 > 0. Hence the sum in (19) converges uniformly on compact 
subsets of { q e C :  Lql < 1}. 

It remains to see why the average over the walk may be interchanged 
with the sums over k and n, respectively, as was claimed above. For  
0 ~< r/< 1 this is allowed because all terms are nonnegative and the r.h.s, of 
(18) and (19) converge (ref. 11, Theorem27.F).  For  qeC, I~t[<l, use 
dominated convergence (ref. 11, Theorem 26.D.) I 

Our proof proceeds with two further lemmas based on Lemma 1. We 
want to show that A~ decays like k -d/2 for large k. Therefore we are 

1 d looking for a singularity as q T 1 in H(m(q)= (d/d~)DH(q) with D = [_5 J, 
of the form (1 _q)-1 /2  for d odd and (1 - ~ )  1 for d even ([_-J denotes 
the integer part). This singularity will be found in G(m(1-q-qq)= 
(dido) D G(1 - q + qq). 

k e m m a  2. H(m)(vl) converges as q J, -1 ,  for every m >~ 0. 

L o m m a  3. H(D)(rt) ~ q-lG(m( 1 - q  + q~l) as q ~ 1, for every d~> 1. 

Lemma3 relates the singularity of H(~) at ~/=1 to elementary 
asymptotics of simple random walk. Lemma 2 shows that there is no 
singularity at q = - 1 .  The proof of both lemmas follows later in 
Section 3.2. 

The result needed about simple random walk is as follows. 

kemma 4. For every d>~l 

F (  d ) q  l(dq)d/2(l_tl)_(D_a/2+l)as r/l, 1 G ( D ) ( 1 - - q + q q ) ~  D--~+ 1 \2re/ 

Proof of Lornma 4. The proof can be obtained by a straightforward 
calculation based on well-known properties of the return to the origin of 
simple random walk. A more elegant argument goes as follows. 

Let G(1--q+qtl)=Zk>~ogkq k. Then it is easy to see that the 
coefficient gk can be written as 

gk=q-lP(X~l+ . .  +vk+~ 1 = 0 )  (20) 

where (vi)i>~ is an i.i.d, sequence of random variables, independent 
of (X,),~> o, with distribution P(vi = m) = q(1 - q)m-i  (m = 1, 2 .... ). 
Since P(X, = 0 )  ~ [1 + ( -  1)"](d/2nn) a/2 as n ---, oe (ref. 9, Section 7), 
and since by the Cram6r-Chernoff theorem (ref. 12, Theorem9.3)  
P(lvt + ... +vk--kq-ll >ek)  decays exponentially in k for every 8>0 ,  it 
follows that 

( dq ~ a/2 
gk ~ q -  1 \ 2 n k /  as k ~ oo 
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The result now follows by standard Abelian arguments (ref. 13, 
Corollary 1.7.3). | 

From Lemmas 3 and 4 we know the singularity of HWl(~/) at q = l, 
while Lemma 2 excludes any contribution from ~/= -1 .  This determines 
the asymptotic behavior of the Ak as k ~ oc because the latter satisfy a 
regularity condition. Indeed, the usual requirement for the application of a 
Tauberian theorem is that the A k are asymptotically monotone. We are not 
able to prove this in a direct manner. However, we use the observation that 
the Ak are moments of a spectral measure on a compact interval. This 
property turns out to be a very crucial part of the proof. Without it we 
would have trouble excluding oscillations and we would have to resort to 
an analysis of H(r/) in the neighborhood of q =  1 and t / = - 1  in the 
complex plane. 

k e m r n a  5. There exists a left-continuous nondecreasing function 
on the interval [ -  1, 1 ] such that for all k >~ 1 

1 

~ = I  t ~ 'd~(t) 
- -1  

Proo f  o f  Lomma 5. Recall the notation introduced in Section 2. Let 
C c Z d denote a generic color configuration (identified with the set of its 
black points). Let #2B= {Cc2U:  0 e C }  and let P B ( C ) = P ( C I O ~ C )  be 
Bernoulli coloring on .(2 B. Introduce the environment process (EP) (Ck)k/>1 
on 12 B given by 

Ck='CxrkC (k>. 1) 

where C is the color configuration as seen from the origin and z x is the shift 
over x, i.e., (rx C)(z) = C(Z + z), z ~ x d (recall that T 1 = 0 on s 

Extend the EP to a doubly infinite process (Ck)k~  by running a 
second independent simple random walk (X'L~>o from 0, by defining 
negative black hitting times (Tk)~<o as 

X~ ~ C for n = O, - To, - T_  1 .... 

X,; r C otherwise 

and by putting 

Ck=~x~  C (k ~O)  

The extended EP is Markov, and is stationary, ergodic, (3) and reversible 
w.r.t. PB. The reversibility follows via the symmetry of simple random 
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walk. Also extend (nk)k>~l t o  a doubly infinite process (nk)k~ ~ by setting 

nk = Tk+ 1 -- T k (k<~O) 

(with a slight abuse of notation for no, which now is no = T1 - To whereas 
according to our original definition, no = T1 = 0).  

Next, consider the Hilbert space L2(f2~, ~, PB) with inner product 

(f, g) = fo f (C)  g(C) dP.(C) 

We may then rewite (3) and (4) as 

q- l=-E(nkIB)=E(n l lB)=(1 ,  s) (ke7/) 

q- lE(nx)=E(nln~+llB)=E(nonklB)=(s ,  Qk-ls) (k~>l) 

where s(C) is the average length of a run started from 0 ~ C and Q is the 
Markov kernel of the EP acting as operator on f2B, 

(Qf)(c)= ~ O(C,C')s ( c ~ , )  
6 '  ~s B 

We have sEL2(E2B, ~, PB) because (s, s)=q-lE(nm)< ~ (see footnote 4 
and refs. 6 and 7). Since Q is self-adjoint by reversibility of the EP, 
the claim follows from the spectral representation theorem (ref. 14, 
Chapter VII) applied to (5) 

q- lA k = E(nmn~ + 1 ]a) - E(n I b B) E(nk + l ]a) 

= E ( ( n o - q  1)(nk--q-1)[B) 

= ( ( s _ q - 1 ) , Q k - l ( s _ q  1)) 

The function /~ in the lemma may have jumps anywhere on [ -  1, 1). 
The integral in the lemma does not cover a jump at 1 because # is taken 
to be left-continuous. However, ergodicity of the EP precludes a jump at 
1 [because ( s - q  1 ,1 )=0] .  I 

From Lemma 5 and (18) we obtain 

( 1 - q )  HOl)=E(no)+ ~ rl k t k ld#(t)  
k~>l  l 

f 
+ l  1 

=E(n~  -1 1--qt d#(t) (1~1<1) 
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By a simple transformation (see below) the integral can be written as a 
Stieltjes transform, for which the following Tauberian theorem holds: 

T a u b e r i a n  T h e o r e m .  Let m > 0  and let ~ be a right-continuous 
nondecreasing function on the interval [0, 2], ~(0)= 0. Assume that 

( .  2 

f(s) = Jo (s + t)-'~ d~(t) 

converges for s > 0. Then for any A i> 0 and 0 < 7 < m the following are 
equivalent: 

r (m)  
~ ( t ) ~ A  t y as t,~O 

F('/ + 1) F ( m -  7) 

f ( s )  ~ As 7- '~ as s J, 0 

Proof. The Abelian direction of the proof follows immediately from 
ref. 15, Chapter V, Theorem 2.a and Corollary 2.a. The Tauberian direction 
follows from ref. 13, Theorem 1.7.4. Indeed, let /~(u)=0 if u~< 1/2 and 
fl(u)=S2/ut-mdo~(t) if u > l / 2 .  Then from ~/2(s-l+bt)-mdfl(bl)= 
star(s) ~ AS ~ as s + 0, it follows that fl(u) ~ A [F(rn)/F(~) F(rn - 7 + 1 )] u m - '  
as u T oo by the theorem cited. In combination with c~(t)=j'l~, u -m  dfl(u), 
the latter implies the desired asymptotic behavior of :~(t) (by standard 
Abelian arguments again). | 

The choice of the interval [0, 2] in the above Tauberian theorem is 
arbitrary and is made for convenience. Application to the expression for 
( 1 - q )  H(tl) leads, in combination with Lemmas2M, to the following 
result: 

k o m m a  6. For every d~> 1 

( 1 - q ) q  d/2 2(d/2~)d/2 
( l - - t )  d/z as tT1 

r ( d / 2  + 1 ) 
#(1)-#(t) 

For every m ~> 0 

lim (1 + t)  m [ # ( t )  - # (  - 1 ) ]  = 0 

Proo f  o f  L e m m a  6. First consider D = 0 (or d =  1). Make the trans- 
formation ~(1 - t) = #(1 ) - #(t) to rewrite 

( 1 - q )  H ( t l ) = E ( n o ) +  + t  dc~(t) 
q 
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From Lemmas 3 and 4 

1/2 

as rl] ' l  

with A=F(1/2)(1--q)q-3/2(2rc)-1/2. Combine the last two displays and 
apply the Tauberian theorem with m =  1, 7 =  1/2, and s =  ( 1 -  t/)/q. This 
gives 

c~(t)~A F(1) t 1/2 as t $ 0  
r(3/2) r(1/2) 

which is the first claim of the lemma for d = 1. 
The same argument works for D > 0 (or d~> 2). By an easy computation )Ol 

( l _ q )  g W ) ( ~ ) = F ( D + l ) t l  z)-i + t  ( l - t )  ~ ida(t) 

This is a Stieltjes transform except for the innocent factors tl -D 1 and 
( 1 -  t) D- 1, which both have limit 1. Again, from Lemmas 3 and 4 

with 

( 1 - q )  H(D)(q)~A ' as q ] ' l  

A' = F(D - d/2 + 1)(1 - q)qa/2- 2(d/2u)a/2 

Now apply the Tauberian theorem with A = A ' / F ( D +  1), m = D +  1, 
7 = d/2, and s = (1 - ~/)/r/. This proves the first claim for d t> 2. 

The second claim follows similarly. Make the transformation 
e ( l + t ) = # ( t ) - # ( - 1 ) ,  take the right-continuous version of c~, and use 
Lemma 2. Use the Tauberian theorem with A = 0. | 

Lemma 6 identifies the singularity in the spectral measure /~. Finally, 
we can apply the standard Abelian theorem for Laplace transforms 
(ref. 15, Chapter V, Theorem 1 and Corollary la) to deduce the asymptotic 
behavior of A k from Lemma 5. This completes the proof of Theorem 3. 1 

Note that our long-time-tail result can be written as 

( 1 - - q ) - l A k ~ q  lg k (21) 

Expressions (21) and (20) are the rigorous versions of (9) and (10). 
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3,2. Proof  of Lernmas 2 and 3 

In the proof of Lemmas 2 and 3 the following large-deviation estimate 
for l(z, n) will be instrumental (Lemma 7 has been used already in the 
proof of Lemma 1). 

k e m m a  7. For  arbitrary random walk in d~>l, there exists K > 0  
such that for all positive integer h(n) and all n 

P(sup l(z, n) > h(n)) ~< (n + 1 ) exp[ - KhZ(n)/n] (22) 
z 

Proof of Lommo 7. The left-hand side of (22) is bounded above by 

P(l(Xi, n) > h(n), X~ ~ X i for 0 ~< j < i) ~ (n + 1 ) P(l(O, n) > h(n) ) 
O ~ i ~ n  

Let o- m (m >/ 1) denote the time at which the walk returns to the origin for 
the m th time. By the Markov inequality 

P(l(O, n) > h(n)) = P(~h(n~ <~ n) <~ inf exp{~n} E(exp{ - ~al })h(,/ 
~>0 

because o" m is a sum of m independent copies of ~ .  Via the identity 
G(z )=  1 / [ 1 - F ( z ) ]  already used earlier, we have 

E(exp { - ~cr I } ) = r (exp { - ~ } ) = 1 - G l(exp { - ~ } ) 

Now use the fact that for arbitrary random walk in d~> 1 there exists 
A I > 0 such that P(X,  = O)<~ Aln-~/z for all n (ref. 9, Section 7). This gives 

E(exp{-~a~})<<.exp(-A2~ 1/2) forall  ~ > 0  

for some Az>0 .  Equation (22) follows by taking ~=  [Azh(n)/2n] z, the 
value where the bound obtains its infimum. | 

Proof of  Lomma 2. First consider m = 0. Let t /= - r ,  0 ~< r < 1. For 
6 > 0 let V ~ be the set of integers 

V~= {/~>0: [ 1 - q + q ( - r ) t t  <~ 1 - 6 }  

There exists B~ > 0 independent of r such that if 6 ~< B~ then 

le  V ~ f o r / o d d  (23) 

Let 

F =  {ze  7/e: zl + "" + z u = e v e n }  



1544 den Hollander e t  al. 

and let Hn(r/) denote the nth term in the right-hand side of (19). Then 

I H . ( - r ) l  ~< 2E((1 - 6 )  Y") 

with 

(24) 

r .  = I{z ~ r \{0}:  l(z, n)s  v~}l 

The aim is to show that Yn is large with large probability. 
Consider the imbedded random walk (2,);~>o on F that is defined as 

follows: 

3(0)=0 

r(i+l)=inf{n>z(i):XneF, Xn~Xw) } (i>~O) 

2, = X,(,) (i >~ O) 

That is, the original random walk is observed only when it visits the set F 
at a site different from the site of its previous visit. The increments 
r(i + 1 ) - r ( i )  are i.i.d, geometric on the positive even integers, have mean 
4d/(2d- 1 ), and are independent of (-~'i). Let ]'(z, i) denote the local time at 
z ~ F of the imbedded random walk after i steps. Then 

T(z,i) 

l(z,~(i+l)-l)='[(z,i)+ ~ p(z,j) (i>>.O, zeF) (25) 
j ~ l  

Here p(z,j) counts the number of immediate returns by the original 
random walk to the site z e F (in two steps) following the j th  visit to z by 
the imbedded random walk. The p(z, j) are i.i.d, geometric on the non- 
negative integers, have mean 1/ (2d-1) ,  and are independent of (2,) and 
hence also of (7(z, i)). For any B2 > 0, write 

P(Yn<~B2 nl/3)= E P(z(i)<~n< r(i+ 1), Yn<~B2 nil3) 
i>~O 

<<. ~ P(r(i)<~n< r(i+ l), Yr(i+l) l <~B2 nl/3 +1) 
i>~ O 

<~ ~ P(n<r(i+l))+ ~ P(Y~(~+~)_I<~2B2iI/3+I) 
i <~ n/8 i > n/8 

(26) 

The first term in the right-hand side decays exponentially in n by the 
Cram6r-Chernoff theorem (ref. 12, Theorem 9.3) because E(r(i + 1)- r(i))= 
4d/(2d- 1) ~< 4. To estimate the second term, proceed as follows. 
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Because the geometric distribution is aperiodic, it is true that for each 
z 6 / '  

inf P ( l +  ~ p(z,j)~ V ~ ) = ~  for some ~ > 0  
l > 0  \ j = l  

Here we use (23), which implies that 

lim inf P p(z, j) ~ V ~ ) 2 
l ~ : : c  1 

It now follows from (25) and the definition of Y, that 

P(Y~(i+~)_~<<.2B2i~/3+I)~P(ZI+ . . .+Z~i  ~2B2i~/3+1) (27) 

where 

]~i = 2 l{7(z,i)>0} 
z E F  

(Z,,)m~l i.i.d, with 

(1 - q + qrl t(z'')) 

(29) 

P(Z~ = 1)=  1 - P ( Z ~  = 0 ) = ~  

Here we rely on the independence of the p(z,j) for different z. From 
Zz~rT(Z, n ) =  n + 1 [recall (16)] it follows that 

/~,~> ( i+  1)/[sup T(z, i)] 
z E F  

Hence from Lemma 7 with h(n) = mnz/3_j 

P(Z1 + --" + Z~ i 1 ~ 2B2 il/3 + 1) 

<.exp{-B3 i~/3 } +P(Z1 + ... +Zi,/3<<.2B2i1/3+ 1) (28) 

for some B3>0.  If 2B2<~, then the last term tends to zero as 
e x p { - B 4 i  1/3 } for some B 4 > 0. Combining (26~(28) and returning to (24) 
with 6 ~< B,, we conclude that 

IH.(-r)l ~< 2 e x p ( - B s n  1/3) 

for some B e > 0. Since this bound is independent of r and is summable, and 
since for all n finite H , ( - r )  converges as rl" 1 [note that H,(tt) is a polyno- 
mial in r /o f  degree n + 1 ], Lemma 2 follows for m = 0. 

It is now easy to prove Lemma 2 for m > 0. The key is the following 
inequality: 

(d/dtl)  m I ~  (1-q+q~/ ' (z '"))  
z r  

< ZCm(k) [I 1-I 
k z~S(k) zr  {0} 
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where the sum runs over all functions k: 7 / a \ { 0 } ~ N w { 0 } ,  and 
S ( k ) = { z : k z > 0 } ,  and Cm(k)=m!/l-Iz(kz!) if ~ . k z = m  and Cm(k)=O 
otherwise. For the last factor of (29) the same estimate 2 exp(-Bsn 1/3) 
holds. To see this, repeat the proof with F replaced by F\S(k) in the defini- 
tions of II, and/~i.  All estimates carry over. Use that 

~(z,i)>~i+ l - [S ( k ) l i  2/3 
z ~ F \ S ( k )  

when supz~r 7(z, i) ~ i 2/3. Use (16) to estimate 

l~ l(z, n) k~ <~ 17 m for all k 
z e S ( k )  

and 

~Cm(k) 1~ lik~Zl(z,.)} <~m!nm 
k z E S ( k )  

Hence there exists B 6 independent of r such that 

] H.(m)(-r)[ ~< B6 n2m exp(--Bsn 1/3) (30) 

which is summable. We conclude that H(m)(-r) is bounded and hence 
converges as r T 1. 

In (19) the mth derivative may first be interchanged with the sum, 
because of the uniform convergence on compact subsets of {7 e C: It/I < 1 } 
(ref. 16, Theorem 8.19), and then be interchanged with the average because 
H,(q) is a polynomial in ~/. | 

Proof of Lemma 3. Set e = 1 - q. First we prove Lemma 3 for D = 0, 
i.e., d = 1. Let 

f(n) = [_n~_], g(n) = [_n~], h(n) = [_nTJ 

with ~, fl, and y positive constants to be chosen along the way. Suppose 
that 

(i) 7>  �89 

Then by Lemma 7 

H(r/)= ~ E( (1- r / ' (~  
n~>0 

17 (1 -- q + qqt(~,.)) 1 (~.pA(~,.)<~h(.)}) + O(1 ) 
z ~ 0  

(31) 
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Split the sum over n into three parts, 

H(r/) = H~(~/) + H2(~/) + H3(~/) + 0(1) 

running over [O, f(~ -l)] ,  (f(e-1),  g(~-l)),  and [g(e-l),  00), respectively. 
This requires 

(ii) ~ ~< fl 

In Hi(t/) substitute the expansions 

1 - tl l(~ = el(O, n) + 0(e212(0, n)) = el(O, n)[1 + O(eh(n))] (32) 
1 - -  q + q@O,~)  

[ I  (1 - q + qqt(z,,)) = I~ exp{ --qel(z, n) + O(e2lZ(z, n))} 
z z 

= exp{ - q e ( n  + 1)[1 + O(eh(n))] } (33) 

This uses the uniform bound on l(z, n) as well as the identity 16). Next 
suppose that 

(iii) ~7 < 1 

Then lim~ o ~h(f(e 1))= O, and it follows that 

Hi(r/) = el1 + o(1)] ~ E(I(O, n ) ) e x p { - q e n [ 1  + o(1)] } (34) 
O<~n<<.f(e 1) 

where we again use (i) and Lemma 7 to get rid of the indicator afterward. 
Note that in (34) the 1 + o(1) factor depends on n and e, but tends to zero 
as e ,[ 0 uniformly in n over the sum. 

To estimate H d q ) ,  observe that [IzeO (1 - q  + qr/~(z'n~) is decreasing in 
n because with each step of the walk one of the local times must increase 
(use that r/ is positive). Therefore, bounding this product for each n in 
H2(r/) by its estimate at n = f ( e  1)just obtained in Hi(q), we get 

H2(q) = O(g(e ~) exp{ - �89 (35) 

To estimate H3(t/), use that for all integers l~>0 

[1 - q + qtltl <~ 1 - q + q ]r/lt~< (1 - q + q 1~1)  1{/>~ 

to bound 

zOo(1-q+q~lt(z '"~)  ~ < ( 1 - q + q  rr/I) R.-t 
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where Rn = ~z 1 (t(z,.)>o~, as in the proof of Lemma 1. By the inequality 
R, ~> (n + 1 )/SUpz l(z, n), this yields 

H 3 ( r / ) = O (  ~ exp{ 1 q~n~ (36) 
g(~_~)~,< ~ 2 h(n)jJ 

again because of the uniform bound on l(z, n). Finally, suppose that 

(iv) ~ > l ,  / 7 ( 1 - ~ ) >  1 

Then H2(r/)= o(1) and H3(r/)= o(1) by (35) and (36), and also 

~ exp{ - �89 E(l(O, n) )=  o(1) 
f ( e - l ) < n <  ~ 

so that, via (34), 

H(r/)=~[1 +o(1)J  ~ E(l(O, n))exp{-qen[l+o(1)]} + O(1) (37) 
n~>O 

But 

exp{-qen} E(l(O,n))= ~ exp{-qen} ~ P(X, ,=0)  
n>~O n>~O m ~ O  

= (1 - e x p {  _q~}) - i  G(exp{-qe})  

Moreover, from Lemma 4 we have 

G(exp{ - q~[-1 + o(1)]})/G(exp{ -qe}) = 1 + o(1) 

and so we conclude that 

H(~)~q ~G(1--q+qtl)  (r/'F 1) 

In this last step we use that simple random walk in d =  1 is recurrent, so 
that the right-hand side diverges and the error terms are of higher order. 
This proves Lemma 3 for D = 0 (or d= 1) because conditions (i)-(iv) can 
be made to hold, for instance, by choosing a = 5/4, fl = 4, and 7 = 2/3. 

It is now easy to prove Lemma 3 for D > 0  (or d>~2). The key is 
(2.29). As we saw before, by taking the Dth derivative of (19) we add at 
most a factor O(n 2D) to the summand. But with ~, fl, and 7 as in (i)-(iv) 
we saw that the summands in H2(r/) and H3(t/) are exponentially small in 
some fractional power of e -1 [see (35) and (36)], and therefore our 
previous estimates can easily accommodate the extra factor n 2D. Thus, 

H~(D)(~) = o(1) 

H~D)(q) = o(1) 
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and hence 

H(~ = H~D)(~)+ 0(1)  

=(d/dtl)D{[l+o(1)Jq-lG(l-q+qyl)}+O(1) (38) 

Finally, pull 1 + o(1) in front of the differentiation. This step is not trivial. 
However, it is easily justified by inspecting how the o(1) term arises in (32) 
and (33), and by verifying that each derivative of the o(1) term adds at 
most a singularity e - ~  (aT< 1) while each derivative of the main factor 
adds e- l .  Here we ask the reader to check the details. | 

4. N U M E R I C A L  C A L C U L A T I O N S  

We now report the results of our numerical study for Bernoulli 
coloring and simple random walk in d =  1, 2, and 3. Our model contains 
two random elements: the coloring and the walk. We simulate a single 
color configuration on a large finite box A c Z d by use of a pseudo- 
random-number generator, coloring each site of A black with probability 
q. If A is large enough, then most local color environments are present with 
the correct statistics. We have avoided simulation of the walk. Instead, 
given the color configurations, we calculate the relevant average quantities 
via numerical solution of difference equations with periodic boundary 
conditions. These equations implicitly average over the walk as well as over 
its starting position (the latter replaces stationarity of the coloring). This 
procedure is repeated for several realizations of the coloring. It allows us 
to assess the dependence on the configuration and, if necessary, to take the 
average over the configurations generated. 

In this way we have obtained results that are accurate within numeri- 
cal precision. It would have been easier also to simulate the walk. However, 
we want to draw quantitative conclusions about Ak for 1 ~<k ~< 100, and 
since typical values are Aloo--~ 10 -3, the numerical computation of E(nk) 
should at least be accurate up to about 10 -5 to get some relative precision. 
Such accuracy cannot be achieved by means of simulation of the walk. 

'1"he method of studying random walk problems by means of numeri- 
cal solution of difference equations has been applied successfully in the 
pastJ 17'18) Here the novel aspect is that the transition matrix between black 
sites is itself the solution of difference equations, so that the method is 
applied twice: first to calculate this matrix and then to iterate it. 

4.1. Basic Q u a n t i t i e s  and Equat ions  

Let C c  A be the set of black sites in the box A. The following three 
quantities are calculated: 
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PI t~ = probability that i is the first black site hit when 

the random walk starts from a random position (i e C) 

Pij = probability that j is the next black site hit if 

the random walk starts from black site i (i, j e  C) 

s~ = average number of steps needed to hit any next black site if 

the random walk starts from black site i(i e C) 

With this notation we have 

E(nk )  = E Plk)si  (k  >~ 1) (39) 
iEc 

with 

pjk)= ~ --~P(k-1)P--~j ( k > l ,  j~C) (40) 
ieC 

Since simple random walk is symmetric, we have, in addition, the relation 

1 
PI ') - s, ( ie  C) (41) 

rat 

as is easily shown by reversing time. As a consequence, only two quantities, 
Pij and s~, need to be calculated. 

The matrix of transition probabilities (Pij)~.j~c and the vector of 
average run lengths (s~)~c are calculated by solving difference equations 
involving two related quantities: 

Qo = probability that j is the first black site hit if 

the random walk starts from site i ( ie  A, j e  C) 

t,. = average number of steps needed to hit any first black site if 

the random walk starts from site i (i e A) 

Let f2 be the discrete Laplace operator on A defined by 

1 ~ m  s 2d if l i - j [ = l  

/20. = 0 otherwise 
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Then (Qij) and (t~) are the solutions of the following sets of equations: 

2 ~ ' 2 0 t J =  - - 1  (ieA\C) (42) 
j c A  

s (ieA\C, keC) (43) 
j e A  

with boundary conditions Qo = 6~J and t~ = 0 for all i, j e  C. The uniqueness 
of these solutions follows from an easy lemma. 

k o m m a .  If C cA is nonempty, then the set of equations 
~j~A~2uxj=O (ieA\C) with boundary condition x j = 0  (jeC) has the 
unique solution xj -= 0 (j  e A). 

Proof. Let M=maxj~A ]xj]. If CCA then there exists meA\C such 
that M =  rXm]. It follows that 

xj 1 M=lxml=[~--~dj. ~ <<--~j. Z Ixjl<<,M 
�9 I j - m l  = 1 . IJ ml = 1 

Hence Xj=Xm for all neighbors j of m. Ifj~A\C, then we can repeat the 
argument, and so XJ is constant along any path of connections between 
pairs of sites of which one lies in A\C. But A is connected and C is 
nonempty, and so M = 0 .  | 

Once we have computed (Qij) and (t~), we can calculate 

1 
Po - 2 Qkj 

2dk: I#- ir = 

1 
tk s~= l +2-dk: rk-~l=x 

and so via (39)-(41) the numerical solution of (42) and (43) leads to the 
evaluation of E(nD. 

The numerical solution of (42) and (43) can be obtained by using 
standard algorithms. The choice of algorithm is somewhat restricted 
because the number of variables is large (IA[ "~ 105). It turned out that a 
simple iteration scheme worked in all cases and we did not encounter any 
problems of convergence. 

4.2 .  R e s u l t s  

In d =  1 both (P~) and (si) can be calculated analytically and (P,j) 
contains mostly zeros. This is because from any black site only transitions 

822,'66,'5-6 24 
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to the two closest black sites are possible. This simplifies the numerical 
calculations considerably, since (39)-(41) can be iterated directly. Our 
numerical results in d =  1 are therefore more accurate than in higher 
dimensions. Configurations of 105 sites with q = 0.14).9 could be examined. 
Each configuration required a few minutes of CPU time on a VAX-8200. 
A power law behavior A k ~ A k - 1 / 2  was found for k large, with A slightly 
dependent on the configuration (fluctuations of less than 1%). We 
averaged Ak, 1 ~<k~< 100, over 100 configurations for q=0.1 ,  0.2, and 0.5 
plotted the results in Fig. 1. There is clear evidence for the asymptotic 
behavior A k ~ A k -  ~/2 with A = (1 - q) q 3/2(1/27~)1/2. In fact, the numerical 
values are slightly lower than the analytic expression. This is caused by 
finite-size effects, i.e., large color fluctuations do not get the correct weight 
even over 100 color realizations. We found that the power law is reached 
faster when q gets closer to 0.5. Also, the even-odd oscillatory effect is less 
pronounced when q is close to 0.5. For  the densities we investigated, the 

~k(s) 
s 

0,08 

0,07 

0,06 

o, o5 

0,04 

I I I I I I i 

0,1 0`11 0`12 0,13 0,14 0,15 0,16 0`17 
k-V? 

Fig. 1 ( d =  1). Ak/S with S =  (1 -q ) /q3 /2  plot ted as a funct ion of k -1/2. The line is (8). The  
t r iangular ,  circular,  and  rec tangula r  dots  are the numer ica l  results for q =0 .1 ,  q = 0.2, and  
q = 0.5, respectively. The  figure shows  tha t  for large e n o u g h  k the da ta  are on a s t raight  line, 
are independen t  of q, and  are either on or slightly below the line shown.  



A Long-Time Tail for Random Walk in Random Scenery 1553 

p o w e r  l a w  w a s  f o u n d  f o r  k >~ 30  a n d  t h e  e v e n - o d d  ef fec t  w a s  c l e a r l y  s e e n  

fo r  k u p  t o  10. I n  a l l  s i m u l a t i o n s  Ak w a s  f o u n d  t o  b e  m o n o t o n e  i n  k. 

F o r  d >  1 o n e  h a s  t o  r e s o r t  t o  n u m e r i c a l  e v a l u a t i o n  o f  (P i j )  a n d  (s i )  as  

e x p l a i n e d  i n  S e c t i o n  4.1. B e c a u s e  (P~j) c o n t a i n s  m a n y  n o n z e r o  e l e m e n t s ,  a 

l a r g e  a m o u n t  o f  c o m p u t i n g  t i m e  a n d  c o m p u t e r  m e m o r y  is n e e d e d .  T h e r e -  

Ak IS) , 

 o.oo i 
o.oo  I 
0005 ! /~ / /~  

0.003 
I I 

001 0.02 003 k -1 

Fig. 2 (d = 2). Ak/S with S = (1 - q)/q plotted as a function of k 1. The line is (8). The dots 
are the numerical results for q = 0.7. The error bars indicate the statistical error. The same 
observations as in the one-dimensional ease can be made. 

Ak(S) 
S 

0.009 

0007 �9 �9 

00053 /~ �9  �9 �9 �9 

0.00 
"Y 3 I 0001 0002 0003 k -3/2 

Fig. 3 (d=3) .  Ak/S with S =  (1 _q)/ql/2 plotted as a function of k 3/2 The line is (8). The 
triangular dots are the numerical results for q = 0.8. The error bars are not drawn, but are of 
a size slightly larger than in Fig. 2. 
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fore we performed our calculations on a supercomputer (Cyber 205, 
Amsterdam). 

In d = 2, configurations of ( 2 0 0 )  2 sites are needed to see the power law 
for densities q = 0.5-0.9 (with fluctuations in A of a few percent). In Fig. 2 
our results are plotted for q = 0.7 with Ak, 1 ~< k ~< 100, averaged over 10 
color configurations. In d = 3 the power law is seen for densities q = 0.74).9 
and configurations of (35) 3 sites (with again fluctuations in A of a few 
percent). Figure 3 plots Ag, 1 ~<k~< 100, for q=0 .8  averaged over 10 color 
configurations. Both in d = 2  and d = 3  there is clear evidence for (8). 
Because of the high densities to which our simulations are restricted, the 
even-odd effect is rather pronounced. We even found that A2k < Azk+~ for 
small k. This effect is visible for k up to 20 (see Fig. 4). The power law was 
found for k >~ 50. 

Ak 

0.02 

0,01 

I I k 

I0 20 30 k 

Fig. 4. The first Ak as a function of k. The dots are the numerical data. The density is q = 0.9, 
the dimension is d = 3. Note the oscillatory effect, which damps exponentially fast. 
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